Conjectura dels nombres perfectes senars

Abans d’enunciar aquesta conjectura anem a veure alguns conceptes que ens ajudaran a entendre-la:

  • Nombres primers de Mersenne

Un nombre és primer de Mersenne si és un nombre primer de la forma Mn= 2n-1. Aquí us deixem alguns exemples:

n

Mn Mn és primer?

2

3

3

7

4

15 No
5 31

6

63

No

7

127

8

255 No
9 511

No

10

1023 No
11 2047

No

12 4095

No

13

8191
14 16383

No

15 32767

No

Així, els 5 primers primers de Mersenne són: 3, 7, 31, 127 i 8191.

ATENCIÓ!! Quan n no és primer Mn tampoc, però si n és primer no vol dir que Mn ho sigui. Això significa que el fet que n sigui primer és una condició necessària però no suficient per a que Mn sigui de Mersenne.

  • Nombres perfectes

Els nombres perfectes són aquells enters que són iguals a la suma dels seus divisors propis. Els divisors propis d’un nombre són tots els divisors del nombre excepte ell mateix.

Per exemple, 6 és un nombre perfecte ja que els seus divisors propis són: 1,2 i 3 (el 6 no és propi) i es cumpleix que: 1+2+3 = 6.

Una manera de trobar nombres perfectes és a partir dels nombres primers de Mersenne, ja que els nombres perfectes equivalen a la meitat del producte entre un nombre primer de Mersenne i el seu enter consecutiu.

Primer de Mersenne Consecutiu Producte Meitat del producte
3 4 12 6
7 8 56 28
31 32 992 496
127 128 16256 8128
255 256 65280 32640
511 512 261632 130816
1023 1024 1047552 523776
Comprovació:
  • Divisors propis de 6: 1,2,3     Suma: 1+2+3=6
  • Divisors propis de 28: 1,2,4,7,14    Suma: 1+2+4+7+14=28

Així, els 5 primers nombres perfectes són: 6, 28, 496, 8128 i 32640.

Doncs bé, la conjectura és la següent:

No existeixen nombres perfectes senars, tots són parells.

Voleu conèixer què són els nombres amics o els nombres sociables? Doncs mireu el següent video:

 

Anuncis

La conjectura de Goldbach

La conjectura forta de Goldbach (1742) diu que tot nombre parell major que 2 es pot expressar com a suma de dos nombres primers (tingueu en compte que l’1 no es considera primer). És un enunciat senzill que, com passa en moltes altres ocasions, ens duu a estudis molt complicats.

Alguns exemples de la conjectura són aquests:

6=3+3                24=17+7               78=31+47             354=127+227          …

Aquesta afirmació va ser enunciada en una carta que va escriure Christian Goldbach al gran matemàtic de l’època Leonard Euler.

La interessant pel·lícula “La habitación de Fermat” comença amb l’enunciat d’aquesta conjectura.

 

En aquesta web podem obtenir la representació d’un número parell com suma de dos números primers, simplement introduïnt el mateix.

en aquest enllaç podem veure un video que parla de la història de la Conjectura de Goldbach.

Com diu en en vídeo, la conectura dèbil de Goldbach (“tot nombre senar major a cinc es pot escriure com la suma de 3 nombres primers“) es va demostrar l’any 2013 per Herald Andrés, un matemàtic peruà.